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Abstract

A collisionless, homogeneous plasma in which the electron velocity distribution is
a bi-Maxwellian with 7'y > T, where the subscripts refer to directions relative to the
background magnetic field B,, can support the growth of two distinct instabilities. Linear
dispersion theory predicts that the whistler anisotropy instability is excited with maximum
growth rate v,, at k x B, = 0 and real frequency w, greater than the proton cyclotron
frequency, whereas the electron mirror instability is excited at propagation oblique to B,
and zero real frequency. In an unmagnetized plasma the electron Weibel instability may
be excited under the same conditions with zero real frequency and maximum growth rate
in the direction of the minimum temperature. Here linear theory is used to compare
dispersion and threshold properties of these three growing modes. For 0.10 < ;. < 1000,
the whistler has a larger v,,, and a smaller anisotropy threshold than the electron mirror, so
that the former mode should dominate in homogeneous plasmas for most physical values of
electron 3. Threshold conditions describing electron temperature anisotropies and parallel

wavenumbers at given maximum growth rates are presented for each instability.

I. Introduction

The collisionless tearing instability is often regarded as the primary large-scale man-
ifestation of reconnection at the Earth’s magnetopause and in the terrestrial magnetotail.

Theory predicts that this instability is a sensitive function of the electron temperature
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anisotropy (e.g. Karimabadi et al., 2004, 2005, and references therein), with 7' ./Tj. >
1 yielding a substantial enhancement of this growth rate (The various symbols used here
are defined in the Appendix.). Recent computer simulations of the tearing mode [Ricci et
al., 2004] have confirmed this prediction, suggesting that 7 ./T). is a critical parameter
for determining the onset and saturation of collisionless reconnection.

A possible source of electron anisotropy in a reconnection configuration has been
demonstrated by Daughton et al. [2004]. Their particle-in-cell simulations of a current
sheet in a collisionless plasma have demonstrated that the growth of the lower hybrid drift
instability heats electrons in the directions perpendicular to the magnetic field. On the
other hand, electron temperature anisotropies are limited in magnitude; theory and simu-
lations of uniform magnetized plasmas have shown that the whistler anisotropy instability
scatters electrons so as to impose a (.-dependent upper bound on T ./Tj. (Gary and
Wang, 1996; Gary et al., 2000; Nishimura et al., 2002) and recent observations demon-
strate that this theoretical constraint is satisfied in the terrestrial magnetosheath (Gary
et al., 2005). These considerations imply that, to provide the proper context for appli-
cation of electron temperature anisotropies to the tearing instability, it is appropriate
to re-examine and compare the linear theory properties of the various short wavelength
resonant instabilities driven by this electron anisotropy.

In a magnetized plasma there are two distinct electromagnetic instabilities driven
by Tic/Tje > 1 (Here e denotes electrons and the other subscripts indicate directions
relative to the background magnetic field B,.). The whistler anisotropy instability has been
studied extensively through both linear theory [Kennel and Petschek, 1966; Scharer and
Trivelpiece, 1967; Gary, 1993] and computer simulation [Ossakow et al., 1972; Cuperman,
1981; Pritchett et al., 1991; Devine et al., 1995; Gary and Wang, 1996; Nishimura et al.,
2002]. The electron mirror instability has received less scrutiny [Pokhotelov et al., 2002];
its name derives from the many properties it shares with the better-known ion mirror
instability driven by an ion T} > Tj. These common properties include w, = 0 in a
homogeneous plasma, maximum growth rate at propagation oblique to B,, predominantly
compressive, that is, |5B|||2 >> [6B.|% and the Landau resonance of the anisotropic
species as the primary driver of the instability.

Electromagnetic growing modes driven by electron temperature anisotropies in an un-
magnetized plasma are known as ” Weibel instabilities” [ Weibel, 1959]. For fluctuations at

k = zk and electron temperatures T, = T, = T, > T, = Tj linear theory predicts [Kalman



Table 1. Electromagnetic instabilities driven by 7' ./T). > 1

Instability Magnetic  Real frequency Wavevector at vy,
field

Whistler anisotropy B, #0 Q; < wp < Q| kme/we <1 0 =0°

Electron mirror B, #0 wy, =0 kme/we <10 #0°

Electron Weibel B,=0 wy, =0 kme/we <1 0 =0°

et al., 1968; Yoon, 1989], and nonlinear theory [Montes and Winske, 1970; Lemons and
Winske, 1980] and computer simulations [Morse and Nielson, 1971; Lemons et al., 1979]
are consistent with, an electron Weibel instability with w,, = 0 and propagation parallel
to the z direction. Table 1 summarizes selected properties of these three electromagnetic
instabilities.

Here linear theory is used to compare dispersion and threshold properties of these
three instabilities. All results presented here are derived from the linear dispersion equation
in a homogeneous, collisionless plasma. If the background magnetic field is nonzero, the

general form of this equation at k x B, = 0 is

w? — k2c® + k2P Z Sji(k, w)=0
J
If the velocity distribution of each species j is represented as a single anisotropic bi-
Maxwellian, it follows that [e.g., Gary, 1993]
+ w; +
SHkw) = o 6265+ 1

Tj; 2

_ T_> Z’<<f>]

In the limit of B, = 0, the dimensionless conductivity becomes

TLj) Z’(Cj)]

T); 2

2
w*
Si(k,w) = kz—JCz [CjZ(Cj) + <1
We consider two species: ions (denoted by subscript i) and electrons. We assume
that the average relative drift between the electrons and ions is zero, and that charge
neutrality n, = n; holds. We assume the following dimensionless parameters: m;/m, =

1836, T)./T); = 1 and, to isolate the consequences of the electron anisotropy, 77 ;/T); = 1.
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I1. Dispersion

Solutions of the linear dispersion equation for a collisionless plasma are typically
expressed in terms of dimensionless variables. For the electron Weibel instability, it is
natural to use the electron inertial length and the electron plasma frequency as normal-
izing factors; thus our results for this growing mode are described in terms of kc¢/w,. and
v/we. Then the dimensionless parameter which characterizes the electron temperature is
ksT)./mc?.

For the whistler anisotropy and electron mirror instabilities, kc/w, is again an ap-
propriate dimensionless variable, but frequencies and growth rates are usually normalized
by the electron cyclotron frequency. In this case, the electron temperature is character-
ized by B, and dimensionless frequencies, growth rates, and wavenumbers are essentially
independent of w, /|| as long as this parameter is substantially greater than unity. For
comparison of these two magnetized instabilities, these normalizations are the natural ones
to use. However, to compare all three instabilities, it is necessary to make the complex
frequency dimensionless by dividing by w.. Then scaling relations for the magnetized
instabilities should be constructed by varying both fj. and w./|Q| so that kpTj./mc?
remains constant.

Figure 1 compares the y(k) for the three instabilities. Here and for a broad range of

parameters the following ordering obtains:
¥m (Electron mirror) < 7,,(Whistler anisotropy) < 7, (Electron Weibel)

Given that w, = 0 for both the mirror and Wiebel instabilities, one might expect that
these two modes would display similar v(k). But Figure 1 shows this is not the case; it is
the (k) of the whistler which closely resembles the Weibel growth rate.

Figure 2 illustrates the growth rate maximized with respect to wavenumber and the
corresponding wavenumber as a function of € for the two modes in a magnetized plasma.
This shows that (k) lies at k x B, = 0 for the whistler and at § # 0 for the electron

mirror instability.

ITI. Threshold Conditions

This section describes several threshold conditions for linear theory thresholds of
electron temperature anisotropy instabilities. We derive these threshold conditions in

magnetized plasmas as follows. We first choose a value for the maximum dimensionless
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growth rate, e.g., Ym/|Q| = 0.01. We next numerically solve the full linear dispersion
equation for many values of 3., obtaining the corresponding frequency, growth rate, and
wavevector for both the whistler anisotropy and the electron mirror instabilities. We
find that both the parallel wavenumber at maximum growth rate k,, and the electron
anisotropy 7’1 ./T). are monotonically decreasing functions of . for both growing modes.
Third, we carry out least-squares fits of the wavenumber and the anisotropy as functions
of B over limited ranges of the latter parameter.

Gary and Wang (1996) showed that the linear theory threshold condition for the

whistler anisotropy instability can be written as

TJ_e Se
1= o
Tjje 5||e

(1)

where the fitting parameters S, and «, are functions of the choice of maximum growth
rate and the range of 3. values over which the fit is carried out. Figure 3(a) shows that
the anisotropy threshold condition for both instabilities can be well fit to Equation (1)
over 10 < 3, < 1000 at v,,,/|€2| = 0.01; Table 2 states the associated fitting parameters
for three different values of the maximum growth rate. Figure 3(a) shows that the electron
mirror instability threshold anisotropy is substantially higher than that of the cyclotron-
resonant whistler anisotropy instability for 0.10 < . < 1000. We conclude that the latter
mode should be the dominant electron temperature anisotropy instability for virtually all
physical values of electron 3, and the absence of space plasma observations of the electron
mirror mode supports this conclusion.

It is instructive to compare these results to the threshold conditions of two electro-
magnetic instabilities driven by the proton anisotropy 7'1 /7T} > 1. Such conditions for both
the proton cyclotron anisotropy instability and the proton mirror instability also satisfy
Equation (1) with subscripts p substituted for subscripts e. A major difference between
the two pairs of modes, however, is that the threshold curves of the two proton anisotropy
instabilities cross at B, ~ 7 [Gary et al., 1994], so that the proton mirror mode has the
faster growth rate and is likely to be the more important source of enhanced fluctuations
at this and larger values of 3),,. This conclusion is supported by a number of space plasma
observations of enhanced proton mirror fluctuations in the magnetosheath [e.g. Anderson
et al., 1994] as well as more indirect evidence for the excitation of the proton mirror mode
in the solar wind [ Winterhalter et al., 1994].

A second expression which emerges from linear dispersion theory describes the par-
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Table 2. Fitting Parameters to Threshold Conditions:
Whistler Anisotropy Instability
10 < By < 1000

’Ym/|Qe| Sk (673 Se (07

0.001 0.36 0.33 0.15 0.55
0.01 0.40 0.26 0.25 0.43
0.10 0.56 0.20 0.80 0.37

Electron Mirror Instability
10 < ﬂ”e < 1000

Tm /|| Sk ar Se Qe

0.001 0.048 0.13 0.53 0.64
0.01 0.114 0.12 0.74 0.50
0.10 0.27 0.11 2.21 0.46

allel wavenumber at instability threshold:

ke _ Sk

We B ﬁ”(gk

(2)

where the fitting parameters Sy and «j are functions of the choice of maximum growth
rate and the range of 3. values over which the fit is carried out. Figure 3(a) shows that
the wavenumber threshold condition for both instabilities can be well fit to Equation (2)
over 10 < B < 1000 at v, /€| = 0.01; Table 2 states the fitting parameters to Equation
(2) for three different values of the maximum growth rate.

The implication of Figure 3(b) and Table 2 is that the parallel wavenumber of the
electron mirror instability at a given threshold is universally smaller than the same quan-
tity at threshold of the whistler anisotropy instability. Furthermore, Figure 1 suggests,
and sample computations not described here confirm, that for a broad range of plasma

parameters

k|m (Electron mirror) < kjj,,, (Electron Weibel) < &, (Whistler anisotropy)
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A third threshold condition is related to the oft-quoted relationship for the electron
Weibel instability T’ o/Tj. — 1 = (kc/we)? [Lemons et al., 1979; Yoon, 1989] which repre-
sents the maximum wavenumber available to growing fluctuations. Figure 1 suggests that
this relationship also applies to the whistler anisotropy instability. Solutions of the linear

dispersion equation yield what may be an even more useful threshold condition for the

Tie | _, <kmc>2 )

We

electron Weibel instability:

for kyc/we << 1. Further, we find this result to be independent of the value of
kT /mec?. Figure 4 illustrates this result and, furthermore, shows that it is approx-
imately true for an intermediate range of wavenumbers for the whistler anisotropy insta-
bility. At the relatively long wavelengths corresponding to weak anisotropies, ion cyclotron
damping quenches the whistler anisotropy instability and Equation (3) is no longer appro-

priate for that growing mode.

IV. Conclusions

We used linear theory to compare the properties of three growing modes excited
by Tyi./Tje > 1: the whistler anisotropy instability and the electron mirror instability
in a magnetized plasma and the electron Weibel instability in an unmagnetized plasma.
Over 0.10 < B < 1000 the first two of these modes have anisotropy thresholds with the
form of Equation (1), although the whistler instability has the uniformly lower threshold.
Similarly, the electron Weibel and whistler anisotropy instabilities satisfy the threshold
condition Equation (3).

The threshold conditions described here may be useful proxies for describing the
consequences of scattering by the relatively short wavelength modes studied here. For
example, if a plasma is magnetized with relatively weak gradients parallel to B,, as may
be the case in a plasma sheet with a so-called guide magnetic field, then the whistler will
be the most important growing mode driven by this electron anisotropy. Particle-in-cell
simulations have shown that this instability growth leads to electron scattering; a conse-
quence of this scattering is to reduce the electron temperature anisotropy to or below the
instability threshold condition. Then Equation (1) with fitting parameters corresponding
to an appropriate instability growth rate determines the maximum anisotropy which can be
sustained under such conditions. Under the plausible assumption that instability growth

and scattering rates are much faster than the growth rate of a large-scale instability such
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as the tearing mode, Equation (1) then provides an upper bound on the 7 ./Tj. which,

in turn, provides a limit on the tearing growth rate.

Appendix

For the jth species we define §); = 87rnjkBT||j/Bg; the plasma frequency, w; =
,/47rnjejz-/mj; the cyclotron frequency, Q; = e;B,/mjc; and the thermal speed, v; =
VEgsT|;/mj. The Alfvén speed is vg = B,/\/4mn;m;. The complex frequency is w =
wy + 47y, the Landau resonance factor of the jth species is (; = w/\/§|k|||vj, and the
cyclotron resonance factors of the jth species are Cf = (w +9Q;)/V2|k|v;. The choice of
coordinate system is such that both B, and the wavevector k lie in the y-z plane. We
define 6 as the angle between k and B, so that k - B, = cos(0). Subscript m denotes a
quantity corresponding to the maximum growth rate v,,/€2;; thus k., and 6,, correspond
to the wavevector which yields the largest value of v for a given set of dimensionless plasma

parameters.
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Figure Captions

Figure 1. Growth rates of three electron temperature anisotropy instabilities at 6
values corresponding to +,, as functions of the fluctuation wavenumber. Results for the
whistler anisotropy instability are at k x B, = 0 and are indicated by solid dots. Re-
sults for the electron mirror instability are at #,, = 52° and are indicated by open cir-
cles. Results for the electron Weibel instability are at k = zk and are shown as crosses.
Here kBT”e/mec2 = 1073, and TLe/T”e = 1.10. For the modes in a magnetized plasma,
we /2| = 223.57, which implies 3, = 100.0.

Figure 2. (a) The growth rates maximized over wavenumber at fixed 6 and (b) the
corresponding wavenumbers as functions of the direction of propagation for the whistler
anisotropy and electron mirror instabilities. Here w./|Q| = 223.57, fj. = 100.0 and
Ty e/T)e = 1.10.

Figure 3. (a) Electron temperature anisotropy and (b) parallel dimensionless
wavenumber at the 7,,/[Q| = 0.01 thresholds of two instabilities as functions of fj..
In each case the discrete symbols represent linear theory results; the lines are least-squares

fits to these points over 10 < 3. < 1000. The solid symbols and the solid lines correspond
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to the whistler anisotropy instability; the open symbols and the dashed lines represent the
electron mirror instability. Here w./|Q| = 223.57.

Figure 4. The electron temperature anisotropy at maximum growth rate as a
function of the square of the wavenumber at maximum growth rate. The solid dots
represent results for the whistler anisotropy instability, whereas the crosses represent re-
sults for the electron Weibel instability. The dashed line represents Equation (3). Here
kgT|./mec* = 1073, For the whistler we/|Q| = 223.57, which implies 3. = 100.0.
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